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Analytic study of the three-urn model for separation of sand
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We present an analytic study of the three-urn model for separation of sand, which can be regarded as a
zero-range process. We solve analytically the master equation and the first-passage problem. We find that the
stationary probability distribution obeys the detailed balance and is governed by the free energy. We find that
the characteristic lifetime of a cluster diverges algebraically with exponent 1/3 at the limit of stability. We also
give a general argument that the scaling behavior is robust with respect to different expressions of the flux.
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I. INTRODUCTION from an asymmetric state is given by the same free energy
function that governs the stationary probability distribution
A granular system consisting of macroscopic particles ex{10]. Coppexet al. also nhumerically investigated the three-
hibits extremely rich phenomena, which have been studiedrn model and found the absence of a continuous transition
both experimentally and theoreticall§]. One such interest- [9]. They also obtained that the characteristic time at the
ing phenomenon is the spatial separation of shaken sand. limit of stability diverges algebraically as the number of par-
the experiment by Schlichting and Nordmel@j, granular ticles increasegsee also Ref{12)).
particles are prepared in a box which is mounted on a shaker In this paper, we present the results of an analytic study of
and separated into two equal parts by a wall. There is a slithe master equation and the characteristic time scale in the
on the wall through which particles can move from one com-three-urn model. We solve the master equation in the ther-
partment to the other. Under a certain shaking condition, thenodynamic limit to find that the solution shows the nature of
granular particles simultaneously separate into dense and di- deformed wave. We also obtain the stationary probability
lute regions, which will not occur for gaseous particles, duedistribution in a finite system, which, interestingly, obeys
to the dissipative nature of macroscopic particle collisions. detailed balance. By combining the knowledge of the char-
The emergence of symmetry breaking in shaken sand waacteristic scales of those distributions and the mean-field flux
first explained by Eggers using a hydrodynamic approaclequation, we obtain the scaling property of the characteristic
[3], and later by Lipowski and Droz using an urn model, time scale at the limit of stability. We also discuss the robust-
which is supposed to capture the essence of the experimenta¢ss of the scaling behavior with respect to different expres-
system[4]. In the urn modelN granular particles are distrib- sions of the flux.
uted intoL urns. Each particle can jump from one urn to  The paper is organized as follows. In Sec. Il we briefly
another with a probability controlled by a parameter, calledreview the model and its master equation. In Sec. Il we
the effective temperature, which depends explicitly on thepresent the analytic solution of the master equation in the
density of particles in each urn. The dissipative nature of thehermodynamic limit and the analytic expression of the sta-
particle collision is incorporated into the model using thetionary probability distribution. In Sec. IV we investigate the
density-dependent effective temperature. scaling law of the characteristic time scale. Section V is de-
The model may be regarded as a zero-range procesgpted to conclusions and discussions.
which was first defined by Spitz¢b], and has been studied
extensively recentl)[6—8]. A zero-range process refers to a Il. THE MODEL AND ITS MASTER EQUATION
dynamic process for particles on an arbitrary lattice where
particle hopping rates depend only on the number of particles The model introduced by Coppest al. [9] is defined as
at departure sites. The results of the zero-range process alld@llows. N particles are distributed between three urns, and
for the formal description of the steady state of the model fothe number of particles in each urn is denotedNasN,, and
fixed N, which could be used in getting the stationary prob-N3=N-N;—N,, respectively. At each time of update one of
ability distribution in the thermodynamic limit. theN particles is randomly chosen. Letbe a fraction of the
The urn model is simple enough to allow extensive nu-total number of particles in the urn which the selected par-
merical calculations[4,9] as well as analytical studies ticle belongs to. With probability exp1/T(n)] the selected
[10,17. The two-urn(L=2) model shows a rich structure particle moves to a randomly chosen neighboring i(m)
with symmetric, mixed, and asymmetric phases separated byTo+A(1-n) is the effective temperature of an urn with par-
continuous and discontinuous transitions, as well as a tricrititicles nN, which measures the strength of fluctuations in the
cal point. In the symmetric phase particles are distributedirn. For a more detailed description of the model, we refer
equally in each urn, while the symmetry is broken in thereaders to Refi4].
asymmetric phase. In the mixed phase, both the symmetric It is easy to derive the master equation for the probability
and asymmetric states are stable. It was also found that thdistributionp(N4, N5, Ns,t) that there ard\; particles in urn
characteristic time that it takes to reach the symmetric statat timet,
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FIG. 1. Phase diagram of the three-urn md@3! The symmet-
ric solution vanishes continuously on the solid line while the asym-
metric one disappears discontinuously on the dotted line. The tran-
sition of the behavior of the stationary probability distribution is
edenoted by the dashed line. For the inset, see Sec. IV.
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where F(n)=nexd-1/T(n)] measures the flux of particles

leaving the given urn. Here we introduced for convenienc

the notationp(N;,N5,N3,t)=0 if N;+N,+N3# N or any N,

is either less than O or greater thisin 5 5 5
Let us denote the occupancies of the urnsnbyN;/N. > = ()] =

The time evolution of the gveraged particle oépréncies is &tp(n,t) ¥ &nl[]-‘l(rﬂp(n,t)]+ &nz[}“z(n)p(n,t)]—o.

governed by the equations (4)

Here we would like to recall that;=1-n;—n, so that the
independent variables arg, n,.

_ Note that Eq.(4) may be interpreted as the continuity
w?ege <'">t;ENeryN3('")pFNl’NZ’N@t)’ and  Zi(f) equation for the probability with velocityF, , F,). Since the
=322iaF (M) =3F (). The unit of time may be chosen such \g|qcity is already given as a function &f the solution to
that there is a single update per particle on average. Scalingy (4) can be formally found as follows. The time evolution
the time byN, expanding Eq(2) with respect to 1N, and  of 4 point located af=(x,y,1-x-y) att=0 is determined

gzggv\;[zeger?ean-ﬂeld approximation in evaluating the aver—by Eq. (3). We denote it byli(t;F). We show its typical

trajectories in Fig. 2. In the symmetric phasegion | in Fig.
1) there is only the stable fixed point corresponding to the
symmetric state so that every trajectory flows to that point.
This is shown in Fig. &). Figure 2Zb) shows a typical be-
wheren;(t) =(n);. havior for the asymmetric phageegion Il in Fig. 1. In this
Detailed analysis of the existence of the stable stationargase, there are three stable fixed points corresponding to
solutions of Eq(3) was done by Coppesat al. [9]. We here  asymmetric states and one unstable fixed point correspond-
display their phase diagram in Fig. 1 to make our paper aihg to the symmetric state as well as three saddle points. The
self-contained as possible. The stable symmetric solutiofrajectories are separated by the separatrices denoted by
(n;=n,=ny) exists in regions I, Ill, and IV while the stable dashed lines. Finally, Fig.(2) shows a typical behavior for
asymmetric solutionin;>n,=n3) exists in regions Il, 1, the mixed phaséegions Ill and IV in Fig. }. There are one
and IV. Note that Eq(3) is obtained with the mean-field stable symmetric fixed point and three asymmetric fixed
approximation that(F(n))=F((n)). However, as will be points as well as three saddle points. The trajectories flowing
shown later, the relation becomes exact for thetoward the stable fixed points are separated by the separa-
S-function-peaked initial probability distribution, as does thetrices.
phase diagram. Since the continuity equatio[] implies that the probability
at pointr evolves according tdR(t;r), we obtain a formal
solution of Eq.(4):

W = )0+ ), @

d .
ani(t) = Fi(n(), )

Ill. THE SOLUTION OF THE MASTER EQUATION

We are mainly interested in investigating the properties of
the infinite system. Consider the thermodynamic lirit
— o0 with the occupancies of the urms being fixed. Repre-
senting the probability distribution by instead ofN;, scal-
ing the time byN, expanding Eq(1) with respect to 1N,

partial differential equation

p(A,t) :fdxdy [F,0) 6@ (fi - R(t;7)).

(5

It implies that the initial probability distribution in the basin
of attraction associated with a stable fixed point will eventu-
ally accumulate at that point. As a consequence, in the long
and keeping the terms up to first order, we arrive at theime limit t— o, the probability distribution becomes a sum
of &function peaks at the stable fixed points denotediby
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we expect it will reveal interesting properties of the system

m concerning the characteristic timd&see [10] in two-urn
case.
n, n, Let us first take the long time limit df— %« in Eq. (1). In

this limit we may drop off the time dependence in the prob-
ability distribution, which now takes the form

[ (N1+1)p(Nl+ 1,N, - 1,N3) (N2>]
F -F| =2
I>| p(N11N21N3) N

. F(N2+1)p(Nl,N2+1,N3—l)_F<&)_
L N P(N1,N3,N3) N/ j
@ . F(N3+1)p<N1—1,N2,N3+1>_F(m>
i N P(N1,N2,N3) N/ ]
. F(N1+1)p(N1+1,N2,N3—1) -F<N—3>
L N P(Ny,N,,N3) N/ |
. F(N3+1)p(N1,N2—l,N3+1) _F<&>
L N p(vaN27N3) N |
.\ F(N2+1)p(Nl—1,N2+1,N3)_F<&) 0
L N P(N1,N3,N3) N/ |
(7

In contrast to the corresponding equati{d?3) in the two-
urn model[10], it does not show a simple tridiagonal struc-
ture. However, we can show that the stationary probability
distribution determined by E@7) obeys theletailed balance

[6]

. 4 .

F(%)F)(NLN&'N&) = F(%)p(vaNZNS)! (8)
where {i,j,k}={1,2,3 and Ni’:Ni+1,Nj’:Nj—1, Ng=Ny.
We also would like to note that this kind of relation is obeyed
in the two-urn model. Equatiof7) essentially tells us that
the probability distribution folN; is given by that folN;-1,
which is in turn given by that foN;-2, and so on. Repeat-
edly using Eq(7) with i as 1 or 2 and=3, we obtain

N1+Ny
IT FUN-Kk+2)/N)
. FIG. 2 Typical trajectories of Eq@3). We plotted the trajelzcto.ries P(Ny, Ny, Ny) = k'\zll - p(0,0N),  (9)
in the diagonal plane of a unit cube so that each variables o 2
treated in the same wagg) A=0.5, To=0.5 (symmetric phase (b) [TFGANTTFGN
A=0.25,Ty=0.05 (asymmetric phadge(c) A=1.0, T;=0.1 (mixed i=1 =1

phasé. The stable, the unstable, and the saddle point are reprq,—vherep(o 0.N) appears as an overall factor to normalize the
sented with a filled circle, a filled square, and a cross, respectively. s

probabilities so that we get

N;+N l -1
R o0) = SR -1 172
p(A,) 2 plé( (n-ny, (6) N NNy kUl F((N-k+ 1)/N)
h h f the initial probabilities in the basi PO.ON= |1+ 2 2 “_‘1 Ny
wherep; are the sum of the initial probabilities in the basin N1=0 Np=0 . .
of attraction associated witfj. .1:[1 F('/N)jl:[l F(/N)

Now we consider another limit in the master equatiby = -
namely, we take the long time limit— before we take the Actually the urn model with fixedN belongs to the group of
limit N—oo. That is, we are looking for the stationary prob- zero-range processes, so it is not surprising that &yand
ability distribution for a finite system. Although this limit (9) can be read off straightforwardly from the results of zero-
may not properly reflect the properties of the infinite systemyange processasee[6]).
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Now let us take the limitN— o. With N;/N=n;, N,/N
=n,, and scaling the probability distribution by?, the sta-
tionary probability distribution for larg& now becomes

eNG()

p(n) =~ 4T3 : (10)
f de dy &V
0 0

where
G(ﬁ):f ' 2dt[lnF(l—t)]—f ldt[InF(t)]
0 0
—f 2dt[InF(t)]. (11)
0

We will call G(n) the (negative free energy function.

In the limit N— o0, the main contribution to the stationary
probability distribution comes only from the maximum of

G(-), and it becomes a sum @ function peaks. The maxi-
mum of G(n) occurs when

J J o
(9—an(ﬁ) = (9—nZG(I’]) =0 (12)
or
F(ny) =F(ng) =F(ng). (13
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diffuses over all compartmenf$2]. The urn model proposed
in Ref. [9] displays the same phenomenon. In region | a
granular cluster is stable up to a time scaleafter which
sand particles are distributed uniformly over all boxes. Ap-
proaching the phase boundary I-1V, the characteristic time
scale diverges. At the phase boundary, it is found numeri-
cally thatr scales ag~ N? with z=0.32[9]. In this section,
the scaling law for the characteristic timeat and near the
phase boundary is derived analytically.

The master equation in Eg4) in the largeN limit does
not contain a diffusive term. It implies that a
o-function-peaked probability distribution remairdsfunc-
tion peaked during time evolution, which enables us to write
down the formal solution in Eq5). The dispersionless na-
ture also guarantees that the mean-field approximation in Eq.
(3) for the occupancyy becomes exact as long as the initial
values of then/’s are prescribed. Hence we can study the
dynamics of the granular cluster using E8) with the initial
conditionsn;=n,=0 andnz=1.

With n;=n,=n andn;=1-2n, one can rewrite Eq.3) as

h=V(n) = 3{F(1 - 2n) - F(n)} (15)

with the initial conditionn(t=0)=0. The cluster dynamics is
then determined from the property of the flow functidm).

In the inset of Fig. 1, we show the plots of the flow function
at different values offy with A=0.3 fixed. AtA=0.3, the
critical point separating the regions | and VI is given By

This condition is equivalent to the stationary condition of the™ Toc=0.1698... For To>Tq, n=1/3 is theunique station-
flux equation(3). Note that in region Il only three stable ary state solutionn grows from zero to 1/3 to reach the
asymmetric solutions having the same maximum exist, whiléymmetric state witm,=n,=n;=1/3. Note that there exists
in region | only the symmetric solution is stable. Therefore@ local minimum inV(n) at 0<n,<1/3 where the flow ve-
the stationary probability distribution has triple peaks in re-locity is minimum. Hence the value of remains at the in-
gion 1l and only the central peak in region I. In regions IIl termediate value=n, for a long time, and then converges
and IV both the symmetric and the asymmetric solutions aré0 N=1/3 quickly. It turns out that the sudden collapse of a
stable so that the maximum 6f(i) should be determined by granular clustef9,12 is due to the local minimum iv(n).
comparing its values at the stable fixed points. The crossoverhe characteristic time scale or the lifetimmés given by

of the maximum point occurs when both values coincide.
This implies that the transition between the triple peaks and
the central single peak in the probability distribution is de-

termined by the conditiodG=G(n,)-G(1/3,1/3,1/3=0,

wheren, is one of the stable asymmetric fixed points. This
condition yields a line that separates the two regions Il and-

V.

It is rather straightforward to extend our analytic results to
the general case of many urns. For example, the free ener

function forL urns is given by

1-n L-1 ~p
G, (A) = f dtinF(1-t)- >, | dtinF(t). (14)
0 i=1 J0

IV. CHARACTERISTIC TIME SCALE

"o dn
T:f —. (16)

0 V(n)
As Ty— T, the minimum flow velocityv(n,) decreases and
hence 7 increases. The asymmetric solution withy
n,<nz emerges al =Ty, whenV(ny)=0 andr diverges.

The scaling law for the characteristic time scale is deter-
mined from the analytic property &f(n) nearTy= Ty, and
P~ n,. One can expand a¥(n)=a(n-ny)?+b(To—Too),
wherea andb are constants of order 1 and all higher order
terms in(Ty—Ty,) are irrelevant. Inserting it into Eq16),
one obtains that the characteristic time scale diverges as
~(To-Too) Y2 (see also Ref{12]). At To=T,,., the granular
system approaches the asymmetric state algebraically in time
as|n—-ng|~t* whose lifetimer diverges. That is to say, the
asymmetric state is stable in tihe— oo limit.

However, for finiteN, the system could evolve into the

One of the interesting phenomena in sands separated lsymmetric state afy=T,. with the help of statistical fluctua-
compartments is the sudden collapse of a granular clustéions inn. Indeed, the probability distributiop has a finite
[9,12. It is observed experimentally that a granular clusterdispersion for finiteN, even though it becomes a sum of
with the majority of sand grains in a single compartments-function peaks for infinitéN. In order to estimate the order
remains stable for a long time until it collapses abruptly andof magnitude of fluctuations in, we investigate the station-
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ary probability distribution in Eq(10) at To=Tg. in detail.
Near the asymmetric state with=n,=n andn;=1-2n, the
(negative free energy function in Eq(1l1) is written as
G(n)=[3dtnF(1-t)-2[5dtinF(t). Now we expand it near
n=n, to yield G(n):G(no)+G’(n0)(n—nO)+%G”(no)(n
—no)2+%G”’(n0)(n—no)3+---. After straightforward calcula-
tions, one can show that

G'(ng) = 2In[F(1 - 2np)/F(n) ], (17)
G = LV’ 18

(o) = F(no) (), (18)
G"(ny) = Tno)VN(nO)' (19

Note thatG’(ng)=G"(ng)=0 sinceV(ny)=V’(ny)=0. There-
fore, the(negative free energy function can be approximated
as G(n)=c(n-ny)® with a constant, and hence the prob-
ability distribution aspy(n) =e*N="° up to a normalization
constant.

PHYSICAL REVIEW E 70, 031305(2004

that is, the system is at the limit of stability. For generic
expression ofT(n), V'(ng) is, in general, not zero, which
results in the scaling behavier- N3, Therefore this scaling
behavior is robust with respect to different formsTgh) or
F(n) [13].

V. CONCLUSIONS

We analytically investigate the three-urn model intro-
duced by Coppet al. [9] We formally solve the master
equation of the model in the thermodynamic limit and find
how the probability distribution evolves. In the long time
limit, the probability distribution becomeé&-function peaks
only at the stable fixed points. The strength of-&unction
peak is equal to the sum of initial probabilities in the basin of
attraction associated with that fixed point.

We solve exactly the stationary probability distribution
where we take the long time limit before we take thermody-
namic limit. We find the distribution obeys the detailed bal-
ance. Regardless of the initial probability distribution it
shows triple peaks or a single central peak depending on the

The stationary probability distribution suggests that theparameters of the system. The final formula for the stationary

magnitude of the fluctuation im near ny is of order én

probability distribution resembles that of equilibrium sys-

~ N3, With the help of the fluctuation, the granular systemtems, where the transition from the triple peaks to the single

could get away from the asymmetric state wHa(t)—n|

peak is determined by the condition that free energie®of

~ én, and flow into the symmetric state. Therefore the chartwo phases become equal.

acteristic time scale is given by= go‘mdn/V(n), which
results in7~ N? with the dynamic exponent

z=1/3. (20)

Our analytic result confirms the numerical resz# 0.32 re-
ported in Ref[9].

Note that the scaling behavier~ N2 at the limit of sta-
bility is resulted from the fact tha¥/(ny)=V'(ny)=0 and
V"(ng) #0. The conditionV(ny)=V’(ny)=0 amounts to the

We also obtain the exact scaling law for the characteristic
time scaler which it takes to reach the symmetric state from
an asymmetric state near and at the phase boundary I-VI. In
the symmetric phaséegion |), the granular cluster is un-
stable andr is finite. It grows as one approaches the phase
boundary asr~ (Ty—Too) Y2 At To=T,., the characteristic
time diverges algebraically as~ N* with the dynamic expo-
nentz=1/3. Wealso give a general argument that this scal-
ing behavior is robust with respect to different expressions of

fact that the asymmetric states emerge as stable solutione flux.
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