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We present an analytic study of the three-urn model for separation of sand, which can be regarded as a
zero-range process. We solve analytically the master equation and the first-passage problem. We find that the
stationary probability distribution obeys the detailed balance and is governed by the free energy. We find that
the characteristic lifetime of a cluster diverges algebraically with exponent 1/3 at the limit of stability. We also
give a general argument that the scaling behavior is robust with respect to different expressions of the flux.

DOI: 10.1103/PhysRevE.70.031305 PACS number(s): 45.70.2n, 68.35.Rh

I. INTRODUCTION

A granular system consisting of macroscopic particles ex-
hibits extremely rich phenomena, which have been studied
both experimentally and theoretically[1]. One such interest-
ing phenomenon is the spatial separation of shaken sand. In
the experiment by Schlichting and Nordmeier[2], granular
particles are prepared in a box which is mounted on a shaker
and separated into two equal parts by a wall. There is a slit
on the wall through which particles can move from one com-
partment to the other. Under a certain shaking condition, the
granular particles simultaneously separate into dense and di-
lute regions, which will not occur for gaseous particles, due
to the dissipative nature of macroscopic particle collisions.

The emergence of symmetry breaking in shaken sand was
first explained by Eggers using a hydrodynamic approach
[3], and later by Lipowski and Droz using an urn model,
which is supposed to capture the essence of the experimental
system[4]. In the urn model,N granular particles are distrib-
uted into L urns. Each particle can jump from one urn to
another with a probability controlled by a parameter, called
the effective temperature, which depends explicitly on the
density of particles in each urn. The dissipative nature of the
particle collision is incorporated into the model using the
density-dependent effective temperature.

The model may be regarded as a zero-range process,
which was first defined by Spitzer[5], and has been studied
extensively recently[6–8]. A zero-range process refers to a
dynamic process for particles on an arbitrary lattice where
particle hopping rates depend only on the number of particles
at departure sites. The results of the zero-range process allow
for the formal description of the steady state of the model for
fixed N, which could be used in getting the stationary prob-
ability distribution in the thermodynamic limit.

The urn model is simple enough to allow extensive nu-
merical calculations[4,9] as well as analytical studies
[10,11]. The two-urnsL=2d model shows a rich structure
with symmetric, mixed, and asymmetric phases separated by
continuous and discontinuous transitions, as well as a tricriti-
cal point. In the symmetric phase particles are distributed
equally in each urn, while the symmetry is broken in the
asymmetric phase. In the mixed phase, both the symmetric
and asymmetric states are stable. It was also found that the
characteristic time that it takes to reach the symmetric state

from an asymmetric state is given by the same free energy
function that governs the stationary probability distribution
[10]. Coppexet al. also numerically investigated the three-
urn model and found the absence of a continuous transition
[9]. They also obtained that the characteristic time at the
limit of stability diverges algebraically as the number of par-
ticles increases(see also Ref.[12]).

In this paper, we present the results of an analytic study of
the master equation and the characteristic time scale in the
three-urn model. We solve the master equation in the ther-
modynamic limit to find that the solution shows the nature of
a deformed wave. We also obtain the stationary probability
distribution in a finite system, which, interestingly, obeys
detailed balance. By combining the knowledge of the char-
acteristic scales of those distributions and the mean-field flux
equation, we obtain the scaling property of the characteristic
time scale at the limit of stability. We also discuss the robust-
ness of the scaling behavior with respect to different expres-
sions of the flux.

The paper is organized as follows. In Sec. II we briefly
review the model and its master equation. In Sec. III we
present the analytic solution of the master equation in the
thermodynamic limit and the analytic expression of the sta-
tionary probability distribution. In Sec. IV we investigate the
scaling law of the characteristic time scale. Section V is de-
voted to conclusions and discussions.

II. THE MODEL AND ITS MASTER EQUATION

The model introduced by Coppexet al. [9] is defined as
follows. N particles are distributed between three urns, and
the number of particles in each urn is denoted asN1,N2, and
N3=N−N1−N2, respectively. At each time of update one of
theN particles is randomly chosen. Letn be a fraction of the
total number of particles in the urn which the selected par-
ticle belongs to. With probability expf−1/Tsndg the selected
particle moves to a randomly chosen neighboring urn.Tsnd
=T0+Ds1−nd is the effective temperature of an urn with par-
ticles nN, which measures the strength of fluctuations in the
urn. For a more detailed description of the model, we refer
readers to Ref.[4].

It is easy to derive the master equation for the probability
distributionpsN1,N2,N3,td that there areNi particles in urni
at time t,
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psN1,N2,N3,t + 1d = FSN1 + 1

N
D 1

2fpsN1 + 1,N2 − 1,N3,td

+ psN1 + 1,N2,N3 − 1,tdg

+ FSN2 + 1

N
D 1

2fpsN1 − 1,N2 + 1,N3,td

+ psN1,N2 + 1,N3 − 1,tdg

+ FSN3 + 1

N
D 1

2fpsN1 − 1,N2,N3 + 1,td

+ psN1,N2 − 1,N3 + 1,tdg

+ F1 − o
i=1

3

FSNi

N
DGpsN1,N2,N3,td, s1d

where Fsnd=n expf−1/Tsndg measures the flux of particles
leaving the given urn. Here we introduced for convenience
the notationpsN1,N2,N3,td=0 if N1+N2+N3ÞN or any Ni

is either less than 0 or greater thanN.
Let us denote the occupancies of the urns byni =Ni /N.

The time evolution of the averaged particle occupancies is
governed by the equations

knilt+1 = knilt +
1

N
kFisnWdlt, s2d

where k¯lt=oN1,N2,N3
s¯dpsN1,N2,N3,td, and FisnWd

= 1
2ok=1

3 Fsnkd− 3
2Fsnid. The unit of time may be chosen such

that there is a single update per particle on average. Scaling
the time byN, expanding Eq.(2) with respect to 1/N, and
using the mean-field approximation in evaluating the aver-
age, we get

d

dt
nistd = Fi„nWstd…, s3d

wherenistd=knilt.
Detailed analysis of the existence of the stable stationary

solutions of Eq.(3) was done by Coppexet al. [9]. We here
display their phase diagram in Fig. 1 to make our paper as
self-contained as possible. The stable symmetric solution
sn1=n2=n3d exists in regions I, III, and IV while the stable
asymmetric solutionsn1.n2=n3d exists in regions II, III,
and IV. Note that Eq.(3) is obtained with the mean-field
approximation thatkFsnWdl=FsknWld. However, as will be
shown later, the relation becomes exact for the
d-function-peaked initial probability distribution, as does the
phase diagram.

III. THE SOLUTION OF THE MASTER EQUATION

We are mainly interested in investigating the properties of
the infinite system. Consider the thermodynamic limitN
→` with the occupancies of the urnsni being fixed. Repre-
senting the probability distribution byni instead ofNi, scal-
ing the time byN, expanding Eq.(1) with respect to 1/N,
and keeping the terms up to first order, we arrive at the
partial differential equation

]

] t
psnW,td +

]

] n1
fF1snWdpsnW,tdg +

]

] n2
fF2snWdpsnW,tdg = 0.

s4d

Here we would like to recall thatn3=1−n1−n2 so that the
independent variables aren1,n2.

Note that Eq.(4) may be interpreted as the continuity
equation for the probability with velocitysF1,F2d. Since the
velocity is already given as a function ofnW, the solution to
Eq. (4) can be formally found as follows. The time evolution
of a point located atrW=sx,y,1−x−yd at t=0 is determined

by Eq. (3). We denote it byRW st ; rWd. We show its typical
trajectories in Fig. 2. In the symmetric phase(region I in Fig.
1) there is only the stable fixed point corresponding to the
symmetric state so that every trajectory flows to that point.
This is shown in Fig. 2(a). Figure 2(b) shows a typical be-
havior for the asymmetric phase(region II in Fig. 1). In this
case, there are three stable fixed points corresponding to
asymmetric states and one unstable fixed point correspond-
ing to the symmetric state as well as three saddle points. The
trajectories are separated by the separatrices denoted by
dashed lines. Finally, Fig. 2(c) shows a typical behavior for
the mixed phase(regions III and IV in Fig. 1). There are one
stable symmetric fixed point and three asymmetric fixed
points as well as three saddle points. The trajectories flowing
toward the stable fixed points are separated by the separa-
trices.

Since the continuity equation implies that the probability

at point rW evolves according toRW st ; rWd, we obtain a formal
solution of Eq.(4):

psnW,td =E dxdy psrW,0dds2d
„nW − RW st;rWd…. s5d

It implies that the initial probability distribution in the basin
of attraction associated with a stable fixed point will eventu-
ally accumulate at that point. As a consequence, in the long
time limit t→`, the probability distribution becomes a sum
of d-function peaks at the stable fixed points denoted bynW i:

FIG. 1. Phase diagram of the three-urn model[9]. The symmet-
ric solution vanishes continuously on the solid line while the asym-
metric one disappears discontinuously on the dotted line. The tran-
sition of the behavior of the stationary probability distribution is
denoted by the dashed line. For the inset, see Sec. IV.
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psnW,`d = o
i

pid
s2dsnW − nW id, s6d

wherepi are the sum of the initial probabilities in the basin
of attraction associated withnW i.

Now we consider another limit in the master equation(1),
namely, we take the long time limitt→` before we take the
limit N→`. That is, we are looking for the stationary prob-
ability distribution for a finite system. Although this limit
may not properly reflect the properties of the infinite system,

we expect it will reveal interesting properties of the system
concerning the characteristic times(see [10] in two-urn
case).

Let us first take the long time limit oft→` in Eq. (1). In
this limit we may drop off the time dependence in the prob-
ability distribution, which now takes the form

FFSN1 + 1

N
DpsN1 + 1,N2 − 1,N3d

psN1,N2,N3d
− FSN2

N
DG

+ FFSN2 + 1

N
DpsN1,N2 + 1,N3 − 1d

psN1,N2,N3d
− FSN3

N
DG

+ FFSN3 + 1

N
DpsN1 − 1,N2,N3 + 1d

psN1,N2,N3d
− FSN1

N
DG

+ FFSN1 + 1

N
DpsN1 + 1,N2,N3 − 1d

psN1,N2,N3d
− FSN3

N
DG

+ FFSN3 + 1

N
DpsN1,N2 − 1,N3 + 1d

psN1,N2,N3d
− FSN2

N
DG

+ FFSN2 + 1

N
DpsN1 − 1,N2 + 1,N3d

psN1,N2,N3d
− FSN1

N
DG = 0.

s7d

In contrast to the corresponding equation(13) in the two-
urn model[10], it does not show a simple tridiagonal struc-
ture. However, we can show that the stationary probability
distribution determined by Eq.(7) obeys thedetailed balance
[6]

FSNi + 1

N
DpsN18,N28,N38d = FSNj

N
DpsN1,N2,N3d, s8d

where hi , j ,kj=h1,2,3j and Ni8=Ni +1,Nj8=Nj −1, Nk8=Nk.
We also would like to note that this kind of relation is obeyed
in the two-urn model. Equation(7) essentially tells us that
the probability distribution forNj is given by that forNj −1,
which is in turn given by that forNj −2, and so on. Repeat-
edly using Eq.(7) with i as 1 or 2 andi =3, we obtain

psN1,N2,N3d =

p
k=1

N1+N2

F„sN − k + 1d/N…

p
i=1

N1

Fsi/Ndp
j=1

N2

Fs j /Nd

ps0,0,Nd, s9d

whereps0,0,Nd appears as an overall factor to normalize the
probabilities so that we get

ps0,0,Nd = 31 + o
N1=0

N

o
N2=0

N−N1 p
k=1

N1+N2

F„sN − k + 1d/N…

p
i=1

N1

Fsi/Ndp
j=1

N2

Fs j /Nd 4
−1

.

Actually the urn model with fixedN belongs to the group of
zero-range processes, so it is not surprising that Eqs.(8) and
(9) can be read off straightforwardly from the results of zero-
range processes(see[6]).

FIG. 2. Typical trajectories of Eq.(3). We plotted the trajectories
in the diagonal plane of a unit cube so that each variableni is
treated in the same way.(a) D=0.5,T0=0.5 (symmetric phase); (b)
D=0.25,T0=0.05 (asymmetric phase); (c) D=1.0, T0=0.1 (mixed
phase). The stable, the unstable, and the saddle point are repre-
sented with a filled circle, a filled square, and a cross, respectively.
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Now let us take the limitN→`. With N1/N=n1, N2/N
=n2, and scaling the probability distribution byN2, the sta-
tionary probability distribution for largeN now becomes

psnWd <
eNGsnWd

E
0

1

dxE
0

1−x

dy eNGsrWd

, s10d

where

GsnWd =E
0

n1+n2

dtflnFs1 − tdg −E
0

n1

dtflnFstdg

−E
0

n2

dtflnFstdg. s11d

We will call GsnWd the (negative) free energy function.
In the limit N→`, the main contribution to the stationary

probability distribution comes only from the maximum of
Gs·d, and it becomes a sum ofd-function peaks. The maxi-
mum of GsnWd occurs when

]

] n1
GsnWd =

]

] n2
GsnWd = 0 s12d

or

Fsn1d = Fsn2d = Fsn3d. s13d

This condition is equivalent to the stationary condition of the
flux equation(3). Note that in region II only three stable
asymmetric solutions having the same maximum exist, while
in region I only the symmetric solution is stable. Therefore
the stationary probability distribution has triple peaks in re-
gion II and only the central peak in region I. In regions III
and IV both the symmetric and the asymmetric solutions are
stable so that the maximum ofGsnWd should be determined by
comparing its values at the stable fixed points. The crossover
of the maximum point occurs when both values coincide.
This implies that the transition between the triple peaks and
the central single peak in the probability distribution is de-
termined by the conditionDG=GsnWad−Gs1/3,1/3,1/3d=0,
wherenWa is one of the stable asymmetric fixed points. This
condition yields a line that separates the two regions III and
IV.

It is rather straightforward to extend our analytic results to
the general case of many urns. For example, the free energy
function for L urns is given by

GLsnWd =E
0

1−nL

dt lnFs1 − td − o
i=1

L−1E
0

ni

dt lnFstd. s14d

IV. CHARACTERISTIC TIME SCALE

One of the interesting phenomena in sands separated by
compartments is the sudden collapse of a granular cluster
[9,12]. It is observed experimentally that a granular cluster
with the majority of sand grains in a single compartment
remains stable for a long time until it collapses abruptly and

diffuses over all compartments[12]. The urn model proposed
in Ref. [9] displays the same phenomenon. In region I a
granular cluster is stable up to a time scalet, after which
sand particles are distributed uniformly over all boxes. Ap-
proaching the phase boundary I-IV, the characteristic time
scale diverges. At the phase boundary, it is found numeri-
cally thatt scales ast,Nz with z.0.32 [9]. In this section,
the scaling law for the characteristic timet at and near the
phase boundary is derived analytically.

The master equation in Eq.(4) in the largeN limit does
not contain a diffusive term. It implies that a
d-function-peaked probability distribution remainsd func-
tion peaked during time evolution, which enables us to write
down the formal solution in Eq.(5). The dispersionless na-
ture also guarantees that the mean-field approximation in Eq.
(3) for the occupancyni becomes exact as long as the initial
values of theni’s are prescribed. Hence we can study the
dynamics of the granular cluster using Eq.(3) with the initial
conditionsn1=n2=0 andn3=1.

With n1=n2=n andn3=1−2n, one can rewrite Eq.(3) as

ṅ = Vsnd ; 1
2hFs1 − 2nd − Fsndj s15d

with the initial conditionnst=0d=0. The cluster dynamics is
then determined from the property of the flow functionVsnd.
In the inset of Fig. 1, we show the plots of the flow function
at different values ofT0 with D=0.3 fixed. At D=0.3, the
critical point separating the regions I and VI is given byT0
=T0c=0.1698…. For T0.T0c, n=1/3 is theunique station-
ary state solution;n grows from zero to 1/3 to reach the
symmetric state withn1=n2=n3=1/3. Note that there exists
a local minimum inVsnd at 0,n0,1/3 where the flow ve-
locity is minimum. Hence the value ofn remains at the in-
termediate valuen.n0 for a long time, and then converges
to n=1/3 quickly. It turns out that the sudden collapse of a
granular cluster[9,12] is due to the local minimum inVsnd.
The characteristic time scale or the lifetimet is given by

t =E
0

n0 dn

Vsnd
. s16d

As T0→T0c
+ , the minimum flow velocityVsn0d decreases and

hence t increases. The asymmetric solution withn1
=n2,n3 emerges atT=T0c whenVsn0d=0 andt diverges.

The scaling law for the characteristic time scale is deter-
mined from the analytic property ofVsnd nearT0.T0c and
n.n0. One can expand asVsnd.asn−n0d2+bsT0−T0cd,
wherea andb are constants of order 1 and all higher order
terms in sT0−T0cd are irrelevant. Inserting it into Eq.(16),
one obtains that the characteristic time scale diverges ast
,sT0−T0cd−1/2 (see also Ref.[12]). At T0=T0c, the granular
system approaches the asymmetric state algebraically in time
as un−n0u, t−1 whose lifetimet diverges. That is to say, the
asymmetric state is stable in theN→` limit.

However, for finiteN, the system could evolve into the
symmetric state atT0=T0c with the help of statistical fluctua-
tions in n. Indeed, the probability distributionp has a finite
dispersion for finiteN, even though it becomes a sum of
d-function peaks for infiniteN. In order to estimate the order
of magnitude of fluctuations inn, we investigate the station-
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ary probability distribution in Eq.(10) at T0=T0c in detail.
Near the asymmetric state withn1=n2=n andn3=1−2n, the
(negative) free energy function in Eq.(11) is written as
Gsnd=e0

2ndtlnFs1−td−2e0
ndtlnFstd. Now we expand it near

n=n0 to yield Gsnd=Gsn0d+G8sn0dsn−n0d+ 1
2G9sn0dsn

−n0d2+ 1
3G-sn0dsn−n0d3+¯. After straightforward calcula-

tions, one can show that

G8sn0d = 2lnfFs1 − 2n0d/Fsn0dg, s17d

G9sn0d =
2

Fsn0d
V8sn0d, s18d

G-sn0d =
2

Fsn0d
V9sn0d. s19d

Note thatG8sn0d=G9sn0d=0 sinceVsn0d=V8sn0d=0. There-
fore, the(negative) free energy function can be approximated
as Gsnd.csn−n0d3 with a constantc, and hence the prob-

ability distribution aspssnd.ecNsn−n0d3 up to a normalization
constant.

The stationary probability distribution suggests that the
magnitude of the fluctuation inn near n0 is of order dn
,N−1/3. With the help of the fluctuation, the granular system
could get away from the asymmetric state whenunstd−n0u
,dn, and flow into the symmetric state. Therefore the char-
acteristic time scale is given byt.e0

n0−dndn/Vsnd, which
results int,Nz with the dynamic exponent

z= 1/3. s20d

Our analytic result confirms the numerical resultz.0.32 re-
ported in Ref.[9].

Note that the scaling behaviort,N1/3 at the limit of sta-
bility is resulted from the fact thatVsn0d=V8sn0d=0 and
V9sn0dÞ0. The conditionVsn0d=V8sn0d=0 amounts to the
fact that the asymmetric states emerge as stable solutions,

that is, the system is at the limit of stability. For generic
expression ofTsnd, V9sn0d is, in general, not zero, which
results in the scaling behaviort,N1/3. Therefore this scaling
behavior is robust with respect to different forms ofTsnd or
Fsnd [13].

V. CONCLUSIONS

We analytically investigate the three-urn model intro-
duced by Coppexet al. [9] We formally solve the master
equation of the model in the thermodynamic limit and find
how the probability distribution evolves. In the long time
limit, the probability distribution becomesd-function peaks
only at the stable fixed points. The strength of ad-function
peak is equal to the sum of initial probabilities in the basin of
attraction associated with that fixed point.

We solve exactly the stationary probability distribution
where we take the long time limit before we take thermody-
namic limit. We find the distribution obeys the detailed bal-
ance. Regardless of the initial probability distribution it
shows triple peaks or a single central peak depending on the
parameters of the system. The final formula for the stationary
probability distribution resembles that of equilibrium sys-
tems, where the transition from the triple peaks to the single
peak is determined by the condition that thefree energiesof
two phases become equal.

We also obtain the exact scaling law for the characteristic
time scalet which it takes to reach the symmetric state from
an asymmetric state near and at the phase boundary I-VI. In
the symmetric phase(region I), the granular cluster is un-
stable andt is finite. It grows as one approaches the phase
boundary ast,sT0−T0cd−1/2. At T0=T0c, the characteristic
time diverges algebraically ast,Nz with the dynamic expo-
nentz=1/3. Wealso give a general argument that this scal-
ing behavior is robust with respect to different expressions of
the flux.
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